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Hydrodynamic modes of diffusion and the corresponding nonequilibrium steady states are studied as an
eigenvalue problem for the Liouvillian dynamics of spatially extended suspension flows which are special
continuous-time dynamical systems including billiards defined on the basis of a mapping. The infinite spatial
extension is taken into account by spatial Fourier transforms which decompose the observables and probability
densities into sectors corresponding to the different values of the wave number. The Frobenius-Perron operator
ruling the time evolution in each wave number sector is reduced to a Frobenius-Perron operator associated with
the mapping of the suspension flow. In this theory, the dispersion relation of diffusion is given as a Pollicott-
Ruelle resonance of the Frobenius-Perron operator and the corresponding eigenstates are studied. Formulas are
derived for the diffusion and the Burnett coefficients in terms of the mapping of the suspension flow. Non-
equilibrium steady states are constructed on the basis of the eigenstates and are given by mathematical
distributions without density functions, also referred to as singular measures. The nonequilibrium steady states
are shown to obey Fick’s law and to be related to Zubarev’s local integrals of motion. The theory is applied to
the regular Lorentz gas with a finite horizon. Generalizations to the nonequilibrium steady states associated
with the other transport processes are also obtained.

PACS number~s!: 05.40.1j, 05.20.Dd, 05.451b

I. INTRODUCTION

Hydrodynamic modes have always played a central role
in nonequilibrium statistical mechanics and in the description
of irreversible processes@1–4#. The concept of the hydrody-
namic mode establishes the interface between the description
in terms of kinetic equations such as the Boltzmann equation
and the macroscopic description in terms of the phenomeno-
logical equations such as the diffusion equation

] tn5D¹2n, ~1!

wheren is the fluid density~or concentration! andD is the
diffusion coefficient. The importance of hydrodynamic
modes holds in their property of being eigensolutions of the
phenomenological equation. In the case of the diffusion
equation, these modes are given by

nk~r ,t !5exp~skt !exp~ ik•r !, ~2!

which describe periodic profiles of concentration character-
ized by the wave numberk. The hydrodynamic modes decay
exponentially in time because the corresponding eigenvalues
are real and negative,

sk52Dk2. ~3!

Accordingly, the concentration becomes spatially uniform
and approaches the thermodynamic equilibrium in the long
time limit (t→1`).

This exponential decay to the thermodynamic equilibrium
seems apparently incompatible with the microscopic Hamil-
tonian dynamics which is time reversible and which, more-
over, preserves phase-space volumes. As a consequence, hy-
drodynamic modes have long been considered at the
intermediate level of the approximate kinetic equations but

not at the fundamental level of the exact Liouvillian equation
describing the time evolution of probability densitiesr t in
phase space,

r t~X!5 P̂tr0~X![r0~F2tX!, ~4!

whereF t represents the flow induced by the Hamiltonian
H on the energy shellH5E and P̂t is the Frobenius-Perron
operator.

The purpose of the present paper is to describe a theory in
which this major difficulty is resolved. The theory is based
on the concept of Pollicott-Ruelle resonances of the
Frobenius-Perron operator ruling the time evolution of prob-
ability densities in phase space@5–8#. We extend the spectral
theory of the Frobenius-Perron operator to diffusion in
continuous-time dynamical systems which are spatially ex-
tended. The theory is developed by considering the
continuous-time dynamical system as a so-calledsuspension
flow, in which the flow is defined on the basis of a mapping
and of a return time function. The mapping may be induced
by the intersections of the trajectories with a Poincare´ hyper-
surface of section. Billiards are particular examples of sus-
pension flows because the trajectories are governed by the
so-called Birkhoff mapping, which uniquely determines the
successive elastic collisions. When the billiards are formed
by a lattice of obstacles the point particle may undergo a
process of deterministic diffusion, as is the case in the regu-
lar Lorentz gas with a finite horizon@9–12#. However, we
emphasize that the present theory applies to a large class of
spatially extended systems we define in the following, which
includes not only billiards but also Hamiltonian systems. The
following work has been motivated by recent results ob-
tained by the author on the hydrodynamic modes of diffusion
in the area-preserving multibaker map@13–16# ~see also
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@17#, which describes a systematic application of these re-
sults to several other simple maps!.

In the case of spatially extended systems which form a
periodic lattice, spatial Fourier transforms are needed in or-
der to reduce the dynamics to an elementary cell of the lat-
tice, also called a Wigner-Seitz cell in solid-state theory@18#.
In this reduction, a wave numberk is introduced which char-
acterizes the spatial periodicity of the observables and of the
probability densities. Each Fourier component of the prob-
ability density evolves differently in time, which requires
introduction of a new Frobenius-Perron operator depending
explicitly on the wave numberk. Accordingly, the Pollicott-
Ruelle resonances and the associated eigenstates also depend
on the wave numberk, as expected for hydrodynamics
modes like~2!.

However, an essential difference appears between the case
of the phenomenological equation~1! and the case of the
Frobenius-Perron equation. This fundamental difference
holds in the fact that the eigenstates corresponding to the
Pollicott-Ruelle resonances are mathematical distributions or
singular measures as shown by Ruelle@8#. The impossibility
of constructing eigenstates in terms of functions has its ori-
gin in the pointlike character of the deterministic dynamics
and in the property of dynamical instability. This aspect is
closely related to theStosszahlansatzof Boltzmann accord-
ing to which the deterministic Liouville equation is approxi-
mated by a kinetic equation of stochastic character obeying
anH theorem. The stochastic assumption introduces a global
smoothing of the dynamics so that the eigenstates can be
constructed in terms of functions, as is the case with the
Fokker-Planck equation, for instance. However, in the ab-
sence of global stochastic smoothing, the eigenstates must in
general be considered as distributions or singular measures,
in which case their construction becomes possible at the
level of the deterministic Liouvillian dynamics if the under-
lying system is hyperbolic, as carried out here below.

Therefore the introduction of singular measures in the sta-
tistical description of the dynamics allows the Frobenius-
Perron operator to admit eigenstates corresponding to the
hydrodynamic modes of relaxation toward equilibrium. The
compatibility with time reversibility is established as fol-
lows. Hyperbolic systems have local stable and unstable
manifolds which are the directions under which the exponen-
tial separation occurs under forward or backward time evo-
lutions, respectively. Therefore an eigenstatem (1) which
corresponds to the relaxation toward equilibrium for
t→1` turns out to be smooth in the unstable direction but
singular in the stable direction. Since the stable and unstable
manifolds exchange their role under time reversal, the situa-
tion is reversed for the eigenstatem (2) which relaxes to equi-
librium for t→2`: this measure is smooth in the stable
direction but singular in the unstable direction. The smooth-
ness in the unstable direction is reminiscent of the property
of the Sinai-Ruelle-Bowen measures to be absolutely con-
tinuous with respect to the Lebesgue measure in the unstable
direction @19#. These results hold not only for billiards but
also for general suspension flows and, as another possible
example, for the Hamiltonian flow of a particle in a lattice of
Yukawa potentials@20#.

Here a word is in order about the comparison with other
recent approaches involving singular measures. Singular

measures may also arise when the support of the invariant or
conditionally invariant measures are fractals of zero Le-
besgue measure. This is the case in the chaotic-scattering
approach where phase-space volumes are preserved but a
fractal repeller is formed because the phase space is noncom-
pact and sustains an escape process as recently described in
detail by Gaspard and co-workers and Chernov and Markar-
ian @21–26#. In the thermostatted-system approach, singular
measures are generated because the dynamics does not pre-
serve the volumes@27#. Here, we would like to emphasize
that the measures we consider are singular although the dy-
namics preserves the volumes and the support is the plain
phase space of positive Lebesgue measure. This particularity
has its origin in the property of the Frobenius-Perron opera-
tor of spatially extended systems to depend on a wave num-
berk. Therefore the corresponding eigenstatesm (6) also de-
pend on the wave number and their singular character comes
from the Bloch-type quasiperiodic boundary conditions@18#.
The eigenstates become smooth in both the stable and the
unstable directions only for the microcanonical measure
which is obtained at vanishing wave numberk50.

The present work is the continuation of a previous work
by Cvitanović, Eckmann, and Gaspard, who developed a
periodic-orbit theory of diffusion@28#. In this context, the
diffusion coefficient has been obtained in terms of the un-
stable periodic orbits of the dynamics in an elementary cell
of the lattice. The formula was derived from the leading
Pollicott-Ruelle resonance given by a zero of thez function
of an appropriate Frobenius-Perron operator. We shall here
consider a similar Frobenius-Perron operator, but one which
is written explicitly for the corresponding suspension flow,
which allows us not only to recover the results of periodic-
orbit theory but also to obtain explicitly the associated eigen-
states.

Moreover, we construct the nonequilibrium steady state
corresponding to a gradient of concentration across the sys-
tem. In the case of the phenomenological equation~1!, such
nonequilibrium steady states are given by

ng(r …52 ig•
]

]k
nk~r ,t !uk505g•r , ~5!

which describes a linear profile of concentration across the
system in the direction of the gradientg. At the level of
kinetic theory, the connection between the hydrodynamic
modes and the nonequilibrium steady states has been the
object of systematic studies, in particular, by Kirkpatrick,
Cohen, and Dorfman@29#. For the model of the multibaker,
such nonequilibrium steady states have recently been con-
structed at the level of the Liouvillian dynamics by Tasaki
and Gaspard@30,31#. In this construction, a new term ap-
pears with respect to the phenomenological steady state~5!
which has its origin in the fluctuations around the average
linear profile. We show below that this result also holds in
general spatially extended suspension flows and, in particu-
lar, in the regular Lorentz gas. In this regard, we notice that
the Lorentz gas is not an Axiom-A system@9–11#. The in-
duced mapping has lines of discontinuities so that the fields
of stable and unstable directions are not continuous, which
has for consequence that most of the global stable and un-
stable sets are not manifolds but only segments of manifolds.
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This constitutes an important difference with respect to the
multibaker map, which nevertheless does not prevent the
construction of the nonequilibrium states on the basis of the
same principles we used in previous works. Therefore the
present generalization of our previous results shows that the
singular character of the Liouvillian hydrodynamic modes is
a general property of dynamically unstable systems.

The paper is organized as follows. Section II describes
what we mean by suspension flows. In Sec. III a preliminary
Frobenius-Perron operator is derived for the flow by using
Fourier transforms to reduce the dynamics from the lattice to
one of its elementary cells. The Frobenius-Perron operator of
the mapping of the suspension flow is studied in Sec. IV
together with the corresponding eigenvalue problem. The
nonequilibrium steady states are obtained in Sec. V. The
higher-order diffusion coefficients are studied in Sec. VI. The
theory is applied to the Lorentz gas in Sec. VII where the
eigenvalues, the eigenstates, and the nonequilibrium steady
states are explicitly constructed. The results are summarized
and conclusions are drawn in Sec. VIII.

II. STATISTICAL MECHANICS OF SUSPENSION FLOWS

A. Suspension flows of infinite spatial extension

We consider a dynamical system of infinite spatial exten-
sion in a phase space defined by the coordinatesX5(r ,s)
PRD, whererPRL are the position coordinates in which the
system forms a Bravais latticeL. The coordinatess
PRD2L are supplementary coordinates which are necessary
to uniquely specify the initial condition of the trajectories. A
lattice vectorlm is centered in each cell of the Bravais lattice,
with m5(m1 , . . . ,mL)PZL. The lattice vectors are given as
linear combinations of the basic vectors of the lattice

lm5m1l100 . . . 001m2l010 . . . 001•••1mLl000 . . . 01PL.
~6!

By using the invariance of the lattice dynamics under spa-
tial translations, the flowF t over the whole lattice can be
reduced to a flowf t in one and the same elementary cell of
the lattice. The flowf t may be further reduced to a mapping
if a Poincare´ hypersurface of sectionP is considered in the
elementary cell

j j115w~j j ! with j jPP , ~7!

and dimP5D21.
We notice that the mapping alone does not provide a com-

plete description of the flow because the coordinate along the

direction of the flow has been eliminated by introducing the
Poincare´ hypersurface of section. To restore this information,
the current phase-space position along the trajectory can be
determined by the interval of timet elapsed since the last
passage in the hypersurface of section. This timet takes its
values in the range 0<t,T(j), where we have introduced
the time of first returnT(j) in the hypersurface of section,
which is the time between the intersectionsj andw(j) with
P . Under these assumptions, the complete phase space can
be represented in the new coordinates

X5~j,t,l!PP ^ @0,T~j!@ ^L. ~8!

In this phase space, the dynamics on the lattice is de-
scribed by the following suspension flowF t. We first ob-
serve that the point (j,0,l) is a point belonging to the hyper-
surface of sectionP translated to the celll. As long as the
time t is between 0 andT(j) the trajectory remains on the
same segment attached to the positionj and the celll. When
t5T(j), the trajectory performs its next passage through the
hypersurfaceP at the pointw(j). At this next passage, the
trajectory may belong to a different celll8 of the lattice. We
have therefore to introduce a function taking its values in the
Bravais latticea(j)PL which is the lattice vector of the
jump between the cellsl and l8: l82 l5a(j).

At the next passage by the hypersurface of section, we
have to identify the point@j,T(j),l# with the point
@w(j),0,l1a(j)#. In the special coordinates~8!, we note that
the flow is defined by the vector fieldF(j,t,l)5(0,1,0) @32#.
The dynamics of the suspension flow is thus controlled by
the mapping

j j115w~j j !,

t j115t j1T~j j !,

l j115 l j1a~j j !, ~9!

where$t j% j52`
1` are the successive times of passages through

the hypersurfaceP and$ l j% j52`
1` the centers of the cells suc-

cessively visited.
The time axis is divided into intervals of lengthsT(w jj)

extending from T(j)1•••1T(w j21j) up to
T(j)1•••1T(w j21j)1T(w jj) during which the position
remains fixed at w jj and the lattice vector at
l1a(j)1•••1a(w j21j). The flow is thus

F t~j,t,l!5~j,t1t,l! for 0<t1t,T~j! ~10!

and

F t~j,t,l!5@w jj,t1t2T~j!2•••2T~w j21j!,l1a~j!1•••1a~w j21j!#

for 0<t1t2T~j!2•••2T~w j21j!,T~w jj!. ~11!

On the other hand, for the time running backward (t,0), we obtain

F2utu~j,t,l!5@w2 jj,t2utu1T~w21j!1•••1T~w2 jj!,l2a~w21j!2•••2a~w2 jj!#

for 0<t2utu1T~w21j!1•••1T~w2 jj!,T~w2 jj!. ~12!
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In the following, we shall denote byf t(j,t) the flow in
the elementary cell at the originl50. Thanks to the preced-
ing definitions, we have carried out a reduction of the flow
from the infinite phase space to a reduced flow in the funda-
mental domain obtained by using the translational symmetry
on the lattice. This amounts to reducing the dynamics on the
infinite plane to the dynamics on a torus by imposing peri-
odic boundary conditions. We emphasize that the position of
the particle in the infinite phase space can still be recovered
from the lattice vectorl together with the dynamics in the
reduced phase space.

To establish the isomorphism between the coordinates of
the suspension flow and the original coordinates of the sys-
tem, we have to introduce the vectorn(j) which gives the
position of the pointj of intersection with the hypersurface
P with respect to the centerl of the currently visited cell~see
Fig. 1!. At the instant of the intersection withP , the position
in the original coordinates is thus

r ~X!uP5r ~j,0,l!5 l1n~j!. ~13!

If we denote byv5ṙ the velocity of the particle given by the
first derivative of the position with respect to time we obtain
the following relation for the segment of trajectory between
the points (j,0,l) and @w(j),0,l1a(j)#:

a~j!5n~j!1E
0

T~j!

v~j,t!dt2n~wj!, ~14!

which is of importance for the following.

B. Assumption on the properties of the mapping

In order to develop the theory, we need to assume several
properties for the suspension flow.

~I! The mappingw is piecewise symplectic.
~II ! The mappingw is time-reversal symmetric.
~III ! The mappingw is hyperbolic in the sense that all the

trajectories are unstable of saddle type with nonvanishing
Lyapunov exponents. We also suppose that the mappingw
has the Kolmogorov property (K property! which implies
ergodicity and mixing. Because of condition~I!, ergodicity
holds with respect to the Lebesgue measuren in the coordi-
natesj onP . Moreover, the rate of mixing is assumed to be
sufficiently fast for functionsf and g which are piecewise
Hölder continuous @33#. In our context, a stretched-
exponential type of mixing may be supposed,

u^ f ~w jj!g~j!&n2^ f &n^g&nu<exp~2 j g!, ~15!

where^&n denotes the average with respect ton, j is large
enough, and the constantg is such that 0,g,1. This prop-
erty of fast decay of correlations is known to imply the fol-
lowing central limit theorem@11#, which we shall use later.

If f is piecewise Ho¨lder continuous and h5 f2^ f &n , the
following probability approaches the Gaussian error func-
tion asymptotically:

lim
n→`

nH j:
1

shAn
(
j50

n21

h~w jj!,yJ 5
1

A2p
E

2`

y

exp(2x2/2)dx,

~16!

where the variance of fluctuations is given by the sum of the
autocorrelation function of h,

sh
25 (

j52`

1`

^h~j!h~w jj!&n , ~17!

which is convergent according to (15).
Although condition~III ! is essential, conditions~I! and

~II ! are not necessary for most of the following consider-
ations which can be extended to dissipative systems and to
one-dimensional maps as well.

Below, we discuss the consequences of conditions~I! and
~II ! and we define the general Frobenius-Perron operator.
Thereafter, we describe the special case of billiards as ex-
amples of suspension flows.

C. Invariant measures

As a consequence of the piecewise symplectic property~I!
of the mapping, we find

Udet]w

]j U51, ~18!

so that volumes are preserved in the Poincare´ hypersurface
of section P . As aforementioned, the Lebesgue measure
n(dj)5dj is invariant under mappingw. The average of a
function f (j) is defined by

^ f &n5
1

uP u EP f ~j!dj, ~19!

whereuP u5*Pdj is the volume of the hypersurfaceP .

FIG. 1. Schematic representation of the suspension flow in the
case of a planar billiard of the type of the Lorentz gas. The base of
the cylinders is the two-dimensional position space available to the
particle. The vertical axis of the cylinders corresponds to the pro-
jection of the velocity tangent to the walls at collisions.j5(r ,v)
are the Birkhoff coordinates.w(j) is the image of the pointj under
the Birkhoff mapping.l is the center of the cell to which the point
j is attached.a(j) is the jump vector so thatl1a(j) is the center of
the cell to which the imagew(j) is attached.n(j) andn(wj) are
the normal vectors from the centers of the cells to the points of
collisions. (j,t,l) are the coordinates of a current point of the flow
with the time coordinate in 0<t,T(j).
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Consequently, we can define the corresponding invariant
measuresm` and m of the flowsF t and f t, respectively,
with the following averages of the quantityF(X):

^F~X!&m`
5E m`~dX!F~X!5 (

lPL
E m~dj dt!F~j,t,l!,

~20!

where

E m~dj dt!F~j,t,l!5
1

uP u EPdjE
0

T~j! dt

^T&n
F~j,t,l!

5
1

^T&n
K E

0

T~j!

F~j,t,l!dtL
n

.

~21!

We denote bŷ & the average over the corresponding mea-
sure. The measurem is equivalent to the Liouville measure
describing the microcanonical ensemble in the energy shell
H5E. The measurem` is not normalizable because it is
defined on an infinite phase space. However, both the mea-
suresm andn are normalizable.

D. Time-reversal symmetry

The operation of time reversal is defined by the involution
u such that

u251,

u + w + u5w21,

T~uj!5T~w21j!,

a~uj!52a~w21j!. ~22!

Under assumption~II !, the suspension flow itself is time-
reversal symmetric under the transformation

Q~j,t,l!5@u +w~j!,T~j!2t,l1a~j!# for 0,t,T~j!,

such thatQ251 and Q+ F t+Q5F2t. ~23!

This transformation corresponds to a reversal of the velocity
of the particle. Since the trajectory is followed in the re-
versed direction, the lattice vector labeling the cell is also
modified ~cf. Fig. 1!.

E. Liouvillian dynamics and the Frobenius-Perron operator

The phase-space dynamics induces a time evolution on
the algebra of classical observables as well as on the prob-
ability densities representing nonequilibrium statistical en-
sembles, which is known as the Liouvillian dynamics. From
these considerations, we can study the statistical mechanics
of the system.

Let us consider an observable quantityA(X) and the den-
sity r(X) of some statistical ensemble defined on the infinite
phase space~8! of the suspension flow. The statistical en-
semble is arbitrary and may be considered as the initial en-
semble of a time-evolution process. The average of the ob-
servables over the ensemble is given by

^A* ~X!r~X!&m`
5E m`~dX!A* ~X!r~X!

5 (
lPL

E m~dj dt!A* ~j,t,l!r~j,t,l!.

~24!

The flow induces an evolution of this average according to

^A* ~F tX!r~X!&m`
5^A* ~X!r~F2tX!&m`

5^A* ~X!~ P̂tr!~X!&m`
, ~25!

in which the Frobenius-Perron operator is defined as

P̂tr~X!5r~F2tX!. ~26!

In the present work, the Frobenius-Perron operator is consid-
ered as a time-dependent bilinear functional taking its values
on the complex numbers,

$AuP̂tur%:SAPEA

rPEr
D→C, ~27!

in which both the observablesA and the densitiesr belong
to functional spacesEA andEr of smooth enough test func-
tions.

F. Billiards as examples of suspension flows

As mentioned in the Introduction, billiards are special
cases of suspension flows satisfying the preceding condi-
tions, which we explicitly discuss in order to fix the ideas
with a specific example.

Billiards are systems of hard particles in elastic collisions
between themselves and with walls. Between the elastic col-
lisions, the particles are free and their motion is described by
the free Hamiltonian

H5 (
a51

N Pa
2

2Ma
5
1

2
v2, ~28!

whereMa are the masses of the particles andPa5MaṘa
their momentum, and where the simplification follows from
the change of coordinatesv5$Pa /AMa%a51

N and
r5$AMaRa%a51

N . If the particles are hard balls in a physical
space of dimensionf , the dimension of the position space is
F5Nf . The flowF t on the energy shellH5E defines thus
a phase space of dimensionD52F21.

In position space, the billiard may be formed by a Bravais
latticeL of obstacles which may be hard spheres or hard
ellipsoids, for instance. Each collision on one of the ob-
stacles is uniquely determined by the position and the veloc-
ity at the impact point in the hypersurface of the obstacles.
These coordinates may be taken as theD2152F22 ca-
nonically conjugate Birkhoff coordinates which are the
F21 positions in the hypersurface and theF21 compo-
nents of the velocity tangent to the hypersurface:
j5(r' ,v'). The flow induces the so-called Birkhoff map-
ping w which satisfies the above conditions~I! and ~II ! in
these coordinates. The Birkhoff mapping may be hyperbolic
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and ergodic under known conditions enunciated, in particu-
lar, by Bunimovich and Sinai@9#. The time-reversal opera-
tion is here defined by reversing the velocity at the collision:
u(j)5u(r' ,v')5(r' ,2v').

III. THE FROBENIUS-PERRON OPERATOR
REDUCED BY SPATIAL TRANSLATIONS

In this section, we reduce the infinite system by using its
symmetry under spatial translations. The observables and
densities are reduced to functions defined in an elementary
cell of the lattice thanks to Fourier transforms@14,28#.
Thereafter, we construct the Frobenius-Perron operator act-
ing on the spatial Fourier transforms.

A. Fourier transforms

We define a projection operator by

Êk5 (
lPL

exp~2 ik• l!Ŝl, ~29!

in terms of the spatial translation operators

Ŝl f ~j,l8!5 f ~j,l1 l8! for l,l8PL. ~30!

The projection operator~29! involves the so-called wave
numberk. This latter is defined on the Brillouin zoneB of
the reciprocal latticeL̃ @18#. The volume of the Brillouin
zone is

uBu5E
B

dk5
~2p!L

udet~ l10 . . . 00, . . . ,l00 . . . 01u
. ~31!

The operators~29! are projection operators since

ÊkÊk85uBud~k2k8!Êk , ~32!

which is a consequence of the relation

1

uBu (lPL

exp~ ik• l!5 (
k8PL̃

d~k2k8!. ~33!

The identity operator is recovered by integrating the pro-
jection operator over the wave number

Î5
1

uBu EBdkÊk . ~34!

If r is a density defined on the infinite phase space, the
function Êkr is quasiperiodic on the lattice

Êkr~j,t,l!5exp~ ik• l!Êkr~j,t,0!5exp~ ik• l!rk~j,t!.
~35!

The same relation holds for the Fourier components
Ak(j,t) of an observableA. We have therefore a decompo-
sition of each observable and each density over the infinite
phase space into components defined in the reduced phase
space and which depend continuously on the wave number
k.

The average~24! of the observableA over the densityr
can therefore be transformed into an integral over the Bril-
louin zone of an average over the reduced phase space

^A* r&m`
5

1

uBu EBdk^Ak* rk&m . ~36!

The time evolution acts in a different way on each one of
the components of the observables or densities as we shall
show in the following section.

B. Frobenius-Perron operator for Fourier components

Our aim is to obtain the time evolution of the different
components of the Fourier transform which is induced by the
Frobenius-Perron operator~26!. With this purpose, we con-
sider the average of an observableA at time t that we de-
compose into a Fourier transform using the projection opera-
tors ~29!:

^A* P̂tr&m`
5^A* r t&m`

5
1

uBu EBdk^Ak* rk
t &m , ~37!

where

rk
t ~j,t!5ÊkP̂

tr~j,t,0!. ~38!

Using Eq.~12!, the action of the Frobenius-Perron operator
on the densityr(X) is given by

P̂tr~j,t,0!5r@F2t~j,t,0!#5r@w2 jj,t2t1T~w21j!1•••1T~w2 jj!,2a~w21j!2•••2a~w2 jj!#

for 0<t2t1T~w21j!1•••1T~w2 jj!,T~w2 jj!. ~39!

Applying the projection operatorÊk and using the property of quasiperiodicity~35!, we obtain

Q̂k
t rk~j,t![ÊkP̂

tr~j,t,0!5exp$2 ik•@a~w21j!1•••1a~w2 jj!#%rk@w2 jj,t2t1T~w21j!1•••1T~w2 jj!# ~40!

for t as in ~39!. Equation~40! defines a new Frobenius-Perron operator acting on the different Fourier components of the
densities as

~Q̂k
t F !~j,t!5exp$ ik• l@F2t~j,t,0!#%F@f2t~j,t!#, ~41!
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where the vectorl@F t(j,t,0)# is the lattice vector corresponding to the path traveled by the point particle on the infinite phase
space from the elementary cell at the origin up to the cell reached at the timet. According to Eqs.~10!–~12!, this lattice vector
is given by

l@F t~j,t,0!#5H 0 for 0<t1t,T~j!

a~j!1•••1a~w j21j! for 0<t1t2T~j!2•••2T~w j21j!,T~w jj!,
~42!

and by

l@F2utu~j,t,0!#52a~w21j!2•••2a~w2 jj!

for 0<t2utu1T~j!1•••1T~w2 jj!,T~w2 jj!. ~43!

We emphasize that the suspension flow is defined in such a
way that the jumps between the lattice cells occur at the
times $t j% of intersections with the hypersurface but not at
intermediate times during the free flights between the succes-
sive passages. This construction introduces an important
simplification in the following developments. We also point
out that the Frobenius-Perron operator~41! explicitly de-
pends on the wave numberk.

The time evolution of an average value is therefore de-
composed like

^A* P̂tr&m`
5

1

uBu EBdk^Ak* Q̂k
t rk&m . ~44!

The Frobenius-Perron operator~41! has not been much stud-
ied until recently. Whenk50, this Frobenius-Perron opera-
tor reduces to the usual one for the closed system in an
elementary cell with periodic boundary conditions. Since the
flow is assumed to be mixing, the spectrum of the operator
Q̂0
t considered in the Koopman approach admitss50 for a

unique discrete eigenvalue corresponding to the invariant
probability measure~21! @34,35#. For kÞ0, the spectral
properties are much less well known, although several recent
works have been devoted to this problem, in particular, in the
multibaker@13,15# but also in the Lorentz gas@28#.

C. Time-reversal symmetry for Fourier components

The time-reversal transformation in phase space induces
an operation on the observables and densities which is

~K̂F !~X!5F* ~QX!, ~45!

and which has the effect that

K̂ P̂tK̂5 P̂2t. ~46!

At the level of the spatial Fourier transform, this operation
reverses the wave number as expected,

K̂Êk5Ê2kK̂. ~47!

Hence the Frobenius-Perron operator of thek component is
transformed according to

K̂Q̂k
t 5Q̂2k

2t K̂. ~48!

Using these symmetry properties, we obtain the relations

^~K̂A!k* Q̂k
t ~K̂r!k&m*5^A2k* Q̂2k

2t r2k&m

5^r2k~Q̂2k
t A2k!* &m , ~49!

which show how the forward and backward semigroups in
the sectors with the wave numbersk and2k are interrelated.

IV. THE SPECIAL FROBENIUS-PERRON OPERATOR
OF THE SUSPENSION FLOW

A. From the flow to the mapping

Pollicott has shown how the Frobenius-Perron operator of
a suspension flow can be simplified@5#. We are interested by
the analytic continuation of the time Fourier transforms of
correlation functions such as

C̃AB~v!5E
2`

1`

dt exp~ ivt !^A~F tX!B~X!&m , ~50!

assuming that̂A&m5^B&m50. In the presence of decay pro-
cesses, it is necessary to split the Fourier transform over the
whole time axis into two semisided Fourier transforms for
positive and negative times, in which case analytic continu-
ation amounts to considering Laplace transforms~with
v5 is). The Laplace transform for positive times defines the
forward semigroup while the one for negative times defines
the backward semigroup.

Because the time evolution of a suspension flow is piece-
wise defined according to Eqs.~10!–~12! and~41!–~43!, the
integral over the time can be transformed into a sum of in-
tegrals over the evolution between the intersections in the
hypersurface of section as

E
0

`

dt exp~2st!Q̂k
t F~j,t!5E

0

t

dt exp~2st!F~j,t2t !1(
ṅ51

` E
t1T~w21j!1•••1T~w2n11j!

t1T~w21j!1•••1T~w2nj!
dt exp~2st!

3expF2 ik•(
j51

n

a~w2 jj!GFFw2nj,t2t1(
j51

n

T~w2 jj!G , ~51!

for Res.0. Performing changes of variables, the Laplace transform is written

53 4385HYDRODYNAMIC MODES AS SINGULAR EIGENSTATES OF . . .



E
0

`

dt exp~2st!Q̂k
t F~j,t!5exp~2st!E

0

t

dt8exp~st8!F~j,t8!1 (
n51

`

exp~2st!

3expF2s(
j51

n

T~w2 jj!2 ik•(
j51

n

a~w2 jj!G E
0

T~w2nj!
dt8exp~st8!F~w2nj,t8!. ~52!

Equation~52! becomes

E
0

`

dt exp~2st!Q̂k
t F~j,t!5exp~2st!F E

0

t

dt8exp~st8!F~j,t8!1 (
n51

`

R̂k,s
n f s~j!G , ~53!

if we introduce the function

f s~j!5E
0

T~j!

dt8exp~st8!F~j,t8! ~54!

and the following Frobenius-Perron operator of the mapping
w:

~R̂k,sf !~j!5exp@2sT~w21j!2 ik•a~w21j!# f ~w21j!.
~55!

This new Frobenius-Perron operator depends not only on the
wave numberk but also on the complex variables which
will give the relaxation rate of the system. Fork50, we
recover the Frobenius-Perron operator previously introduced
by Pollicott for suspension flows. When the calculation is
carried out for the Fourier transform over the whole time axis
as performed by Pollicott@5#, there is no extra term as for
Eq. ~53!, in which the initial time may fall between two
successive collisions.

The adjoint of the Frobenius-Perron operator~55! is de-
fined by requiring that

^g* ~R̂k,sf !&n5^~R̂k,s
† g!* f &n , ~56!

so that

~R̂k,s
† g!~j!5exp@2s*T~j!1 ik•a~j!#g~wj!. ~57!

B. Eigenvalue problem andz function

If we consider the Frobenius-Perron operator~55! as a
transfer operator acting on smooth test functions, we can
pose an eigenvalue problem as follows. Eigenvalues are de-
fined as the zeros of the complex variables of the Fredholm
determinant@6#

Det~ Î2R̂k,s!50. ~58!

If such zeros exist, they depend parametrically on the wave
numberk. The work of Cvitanovic´ and co-workers@36# has
shown that the zeros may be obtained in terms of periodic
orbits. The Fredholm determinant~58! is given as a Selberg-
Smalez function which is itself a product of inverse Ruelle
z functions@6,28#:

Det~ Î2R̂k,s!5)
p

)
m1 , . . . ,mu50

F12
exp~2sTp2 ik•ap!

uLp
~1!
•••Lp

~u!uLp
~1!m1

•••Lp
~u!muG ~m111!•••~mu11!

[Z~s;k!, ~59!

where we assumed that all the periodic orbits are of hyperbolic type in each of the directions transverse to the flow and that
the stability eigenvalues of the linearized Poincare´ section transverse to the orbit come in pairs$Lp

( i ) ,Lp
( i )21% i51

u with
u5(D21)/2. The first product extends over all the prime periodic orbitsp of the mappingw. The second product runs over
the integersm1 , . . . ,mu . The vectorap gives the distance traveled by the particle on the lattice during the prime periodTp of
p. If np is the number of collisions during the prime period ofp and if jp is some initial condition, these quantities are given
by, respectively,

Tp5 (
j50

np21

T~w jjp!, ap5 (
j50

np21

a~w jj!, detF]wnp

]j
~jp!2L lG50. ~60!

In the present context of suspension flows, the result~59! can be derived as follows:

Det~ Î2R̂k,s!5exp ln Det~ Î2R̂k,s!5exp Tr ln~ Î2R̂k,s!5expS 2 (
n51

`
1

n
TrR̂k,s

n D , ~61!

with the trace defined by
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TrR̂k,s
n 5E

P
H exp(

j51

n

@2sT~w2 jj!2 ik•a~w2 jj!#J d~j2wnj!dj. ~62!

The kernel of the Frobenius-Perron operator is given by a Dirac distribution which can be decomposed as follows:

d~j2wnj!5 (
j̃ 5wn j̃

d~j2 j̃ !

udet@ l2]jw
n~ j̃ !#u

. ~63!

With the previous assumption on the stability eigenvalues, the determinant in the denominator of~63! can be written as

udet@ l2]jw
rnp~ j̃ !#u215)

i51

u

uLp
~ i !r u21S 12

1

Lp
~ i !r D 22

5 (
m1 , . . . ,mu50

`
~m111!•••~mu11!

@ uLp
~1!
•••Lp

~u!uLp
~1!m1

•••Lp
~u!mu# r

, ~64!

where we supposed that the fixed pointj̃ of wn belongs to a
periodic orbit of prime periodnp which is repeatedr times
during then5rnp iterations. The sum over then iterations
and over the fixed pointsj̃ can be transformed into a sum
over the prime periodic orbits and their repetitions according
to (n51

` ( j̃ 5wnj̃5( r51
` (pnp . The sum over the repetition

number can be performed and the Taylor expansion
ln(12y)52( r51

` (yr /r ) used again to finally obtain the
Selberg-Smalez function ~59! with the characteristic quan-
tities ~60! for the periodic orbits. Q.E.D.

Let us now describe a few properties of thez function.
For the forward semigroup, no zero is expected when Res is
positive and large enough. The zeros are expected for ana-
lytic continuation toward negative values of Res. Several
kinds of singularities, such as simple zeros, multiple zeros,
or branch cuts, may be encountered. When the wave number
vanishes,k50, the z function admits a simple zero ats50
because the system is mixing. This zero corresponds to the
ergodic invariant probability measure given by~19! which
has a uniform density function:c0(j)51. Here, we are in-
terested in the behavior of this zero when the wave number is
tuned away fromk50. We may expect that fork small
enough, there exists a zeros5sk and a corresponding eigen-
stateck(j) such that

R̂k,sk
ck~j!5ck~j!. ~65!

WhenkÞ0, we no longer expect that the eigenstateck is a
function. Works on the multibaker suggest that the eigenstate
is a distribution which acquires a meaning only when it is
applied to a smooth enough test functiong(j) such that
^g*ck& becomes a well-defined complex number. This result
has been proved for the multibaker@15,16#. Here, we assume
that the eigenvaluesk and the eigendistributionck can be
differentiatedN times at small enough wave numbersk, with
N large enough and possibly arbitrarily large. According to
this assumption, we carry out successive differentiations of
the eigenvalue equation~65! to obtain the nonequilibrium
steady state, the diffusion coefficient given by the Green-
Kubo relation, Fick’s law, as well as the higher-order diffu-
sion coefficients@37–39#. It will become clear in the follow-
ing that the derivatives of the eigenstateck at k50 are
distributions~singular measures!.

Assuming the existence of the eigenstate in~65!, the ad-
joint ~57! of the Frobenius-Perron operator also admits an
eigenstate

R̂k,sk
† c̃k~j!5c̃k~j!, ~66!

which plays the role of the left eigenstate of the Frobenius-
Perron operator itself whileck is the right eigenstate. We
may also assume that both eigenstates satisfy the normaliza-
tion condition

^c̃k*ck&n51. ~67!

C. Consequences of time-reversal symmetry

Time-reversal symmetry has important consequences on
the eigenvalues of the Frobenius-Perron operator, which can
be deduced thanks to thez function ~59!. To each periodic
orbit p, a time-reversed periodic orbitup is associated such
that

Tup5Tp , aup52ap , Lup
~ i !5Lp

~ i ! ~ i51, . . . ,u!.
~68!

Moreover, we note that all these characteristic quantities are
real. Equation~68! therefore implies that the product over
periodic orbits in thez functionZ(sk ;k)50 can be rewritten
to getZ(sk ;2k)50. On the other hand, taking the complex
conjugate of thez function implies thatZ(sk* ;2k)50.
Therefore the eigenvalues satisfy the relations

sk5s2k and sk*5s2k* . ~69!

These relations can also be obtained from Eq.~49!.
Introducing the operator

k̂ f ~j!5 f * ~uj!, such thatk̂25 Î , ~70!

the Frobenius-Perron operator of the mapping is related to its
adjoint by

k̂R̂k,sk̂5R̂2k,s
† . ~71!

Therefore the time-reversal symmetry implies that the left
and right eigenstates are related by
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c˜k~j!5c2k* ~uj!. ~72!

As we mentioned in the Introduction, if the right eigenstates
are smooth along the unstable directions, the left eigenstates
are smooth along the stable directions because the stable and
unstable directions are exchanged by the time-reversal trans-
formationu.

D. Relation to the eigenvalue problem for the flow

Since the original problem concerns the flow and the
Frobenius-Perron operator~41!, we need to establish the con-
nection between the eigenstate~65! and the eigenstate corre-
sponding to the flow, namely,

~Q̂k
t Ck!~j,t!5exp~skt !Ck~j,t!. ~73!

If we take the Laplace transform of both members of Eq.
~73! and if we use Eq.~53! introducing the transform~54! of
the eigenstate as

Yk,s~j!5E
0

T~j!

dt8exp~st8!Ck~j,t8!, ~74!

the eigenvalue equation becomes

E
0

t

dt8exp~st8!Ck~j,t8!1 (
n51

`

R̂k,s
n Yk,s~j!

5
exp~st!

s2sk
Ck~j,t! ~75!

for 0<t,T(j).
Using the relation

(
n51

`

R̂k,s
n 5

R̂k,s

Î2R̂k,s

, ~76!

and settingt50, we obtain

~ Î2R̂k,s!Ck~j,0!5~s2sk!R̂k,sYk,s~j!. ~77!

The equalitys5sk leads to

~ Î2R̂k,sk
!Ck~j,0!50, ~78!

which shows that the eigenstate of the flow att50 may be
identified with the eigenstate of the mapping defined by~65!,

Ck~j,0!5ck~j!. ~79!

To determine the eigenstate of the flow for the other values
of t, we differentiate Eq.~75! with respect tot to get

]tCk~j,t!52skCk~j,t!, ~80!

whose solution is

Ck~j,t!5exp~2skt!ck~j! for 0<t,T~j!. ~81!

We emphasize that Eq.~81! holds for t,T(j). At
t5T(j), the distributionCk acquires a phase due to the
jump in the lattice vector according to

Ck@j,T~j!#5exp@ ik•a~j!#Ck~wj,0!, ~82!

in agreement with the eigenvalue equation~65!. We also
notice that, sincesk,0, the eigenstate~81! presents an ex-
ponential growth which only lasts for a finite time interval
after which the exponential damping expected from Eq.~73!
prevails. In this way, the eigenvalue problem formulated at
the level of the flow and of the mapping are interconnected.

V. FROM THE EIGENSTATES
TO THE NONEQUILIBRIUM STEADY STATES

In this section, we construct the nonequilibrium steady
state starting from Eqs.~65!–~67! defining the left and right
eigenvectors. We perform successive differentiations of
these equations with respect to the wave number. The result-
ing expressions are thereafter evaluated for a vanishing wave
number.

A. Mean drift

Differentiating the normalization condition~67! with re-
spect to the wave number, we obtain

^]kc̃k*ck&n1^c̃k* ]kck&n50. ~83!

On the other hand, the normalization condition can be rewrit-
ten using the eigenvalue equation as

^c̃k*ck&n5^c̃k* R̂k,sk
ck&n51, ~84!

which is also differentiated with respect to the wave number,
to get

^]kc̃k* R̂k,sk
ck&n1^c̃k* R̂k,sk

]kck&n

1^c̃k* @2]kskT~w21j!2 ia~w21j!#R̂k,sk
ck&n50. ~85!

The eigenvalue equation~65! and Eqs.~83! and ~84! yield

2]ka
sk^c̃k*T~w21j!ck&n2 i ^c̃k* aa~w21j!ck&n50

~86!

or

]ksk52 i
^c̃k* a~w21j!ck&n

^c̃k*T~w21j!ck&n

. ~87!

In the limit k50, the mean drift is vanishing,

]ks050, ~88!

becausec05c0*51 and^a(j)&n50.

B. The first derivative of the eigenstate
with respect to the wave number

As mentioned in the Introduction, the nonequilibrium
steady state corresponding to a constant concentration gradi-
ent across the system is given by the derivative of the eigen-
state with respect to the wave number and evaluated at

4388 53PIERRE GASPARD



k50 @cf. Eq. ~5!#. In order to get the derivative of the eigen-
state, we differentiate the eigenvalue equation~65! directly
with respect tok to obtain

@2]kskT~w21j!2 ia~w21j!#~R̂k,sk
ck!~j!1~R̂k,sk

]kck!~j!

5]kck~j!. ~89!

At k50, the first derivative of the eigenvalue vanishes be-
cause of~88! while the eigenstate becomes the microcanoni-
cal measure:c051. Therefore the gradient state obeys the
functional equation

]kc0~w21j!2 ia~w21j!5]kc0~j!, ~90!

which is one of our main results.
Similarly, the differentiation of the adjoint eigenvalue

equation~66! leads to

]kc̃0~wj!1 ia~j!5]kc̃0~j!. ~91!

Equations~90! and ~91! admit the solutions

]kc0~j!52 i(
j51

`

a~w2 jj!, ~92!

]kc̃0~j!51 i(
j50

`

a~w jj!, ~93!

as can be checked directly. Nevertheless, we notice that the
solutions for the gradients of the left and right eigenstates
can be exchanged. In order to resolve this ambiguity, we
need to go back to the condition of forward semigroup. The
eigenstateck is obtained by successive applications of the
forward evolution operator. It corresponds to a density which
is propagated in the future. Now, we observe that the forward
propagation involves the inverse mappingw21 as shown by
~55! while the backward propagation involves the direct
mappingw. Therefore the solution of~90! which is consis-
tent with the forward propagation must be taken as~92! and
not as~93!. In this way, the ambiguity is resolved.

C. Nonequilibrium steady states

According to Eq.~5!, the nonequilibrium steady state cor-
responding to a gradient of concentration in the direction of
the constant vectorg is given by@30,31#

cg~j!52 ig•]kc0~j!52(
j51

`

g•a~w2 jj!. ~94!

Considered as a function,cg is meaningless. However, the
assumed property of decay of correlations~15! gives a mean-
ing to ~94! in the sense of a distribution acting on test func-
tions f (j) which are piecewise Ho¨lder continuous. Indeed, if
f (j) is such a function we have that

u^ f ~j!g•a~w2 jj!&nu<exp~2 j g! ~95!

for j large enough, sinceg•a(j) is also a piecewise Ho¨lder
continuous function of vanishing mean value. As a conse-
quence, the sum

^ f ~j!cg~j!&n52(
j51

`

^ f ~j!g•a~w2 jj!&n ~96!

is convergent and̂f (j)cg(j)&n is therefore a finite number.
A similar reasoning shows that both~92! and ~93! are also
linear functionals known as distributions.

The distribution~96! may be considered as a nonpositive
measure which is singular with respect to the Lebesgue mea-
sure because its kernelcg(j) is not a function as shown by
the following property.

According to the central limit theorem~16!, the probabil-
ity for the sum ~94! to remain in the finite interval
@2h,1h# is equal to

nH j:2h,(
j51

n

g•a~w2 jj!,1hJ .
n→`

2h

sg•aA2pn
.

~97!

Since this probability vanishes in the limitn→` we may
expect that the sum remains finite only on a set of zero Le-
besgue measure. In Sec. VII, we shall see that the distribu-
tion ~94! defining the nonequilibrium steady state may be
represented by its cumulative function, in the particular case
of the Lorentz gas.

With respect to the flow dynamics, the nonequilibrium
steady state can be obtained using Eq.~81! as

Cg~j,t!52 ig•]kC0~j,t!5cg~j! for 0<t,T~j!.
~98!

Since the eigenstateCk is quasiperiodic over the lattice, i.e.,
that

Ck~j,t,l!5exp~ ik• l!Ck~j,t,0!, ~99!

the nonequilibrium steady state satisfies

Cg~j,t,l!5g• l1Cg~j,t,0!5g• l1cg~j!

5g• l2(
j51

`

g•a~w2 jj!, ~100!

which shows that the measure increases linearly in the direc-
tion of the gradient as expected from~5!. However, we ob-
serve that the exact deterministic construction involves a
new term with respect to~5!, which describes fluctuations
around the nonequilibrium steady state.

A time-reversed nonequilibrium steady state can also be
defined from the adjoint eigenstatec̃k as

c˜g~j,t,l!5g• l1c̃g~j!5g• l1(
j50

`

g•a~w jj!. ~101!

Using Eqs.~13! and ~14!, we notice that the distribution
corresponding to a constant gradient of concentration is sim-
ply given by

Cg~X!5g•r ~X!1E
0

2`

g•v~F tX!dt, ~102!
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wherev(F tX) is the velocity at timet of the trajectory from
the initial conditionX. Similarly, the time-reversed nonequi-
librium steady state is

C̃ g~X!5g•r ~X!1E
0

1`

g•v~F tX!dt. ~103!

Equations~102! and ~103!—which constitute the central re-
sult of the present work—give the nonequilibrium steady
states in terms of the continuous-time flow without reference
to the mapping. We may thus conclude that Eqs.~102! and
~103! are general expressions, which apply to general Hamil-
tonian flows in the sense of distributions. As a corollary, the
singular character of the nonequilibrium states also appears
as a general result.

In contrast with the scaling theories of diffusion, the non-
equilibrium steady states are here defined at the microscopic
level of phase space. In this regard, such nonequilibrium

measures naturally generalize the equilibrium measures. A
crucial aspect is that the support of the nonequilibrium mea-
sures we consider here is the plain phase space of integer
dimensionD21 in the spaceP of j. This is a difference
with respect to the chaotic-scattering approach concerned
with open systems where the support of the invariant mea-
sure is fractal. Nevertheless, the present measures remain
singular and are therefore different from the measure of the
microcanonical ensemble, which is the Sinai-Bowen-Ruelle
measure associated with the mappingw.

It will be checked here below that the nonequilibrium
steady states obey Fick’s law. Before reaching this result, we
need to determine the diffusion matrix.

D. Diffusion matrix

Differentiating Eq.~86! again with respect to the wave
number, we get

2]ka
]kb

sk^c̃ k*T~w21j!ck&n2]ka
sk^]kb

c̃ k*T~w21j!ck&n2]ka
sk^c̃ k*T~w21j!]kb

ck&n2 i ^]kb
c̃ k* aa~w21j!ck&n

2 i ^c̃ k* aa~w21j!]kb
ck&n50 ~104!

for a,b51, . . . ,L. Taking the limit k50, using Eq.~88!,
andc05c̃ 051, we obtain

]ka
]kb

s052
i

^T&n
@^]kb

c̃ 0* aa~w21j!&n

1^aa~w21j!]kb
c0&n#. ~105!

Solving Eq.~105! requires the knowledge of]kc0 and of its
adjoint which have been obtained in Eqs.~92! and~93!. After
substitution, we get the diffusion matrix as

Dab52
1

2
]ka

]kb
s05

1

2^T&n
K (
j52`

1`

aa~j!ab~w jj!L
n
.

~106!

If diffusion is isotropic in the lattice, the diffusion matrix is
diagonalDab5Ddab with the diffusion coefficient

D5
1

2L^T&n
(
j52`

1`

^a~j!•a~w jj!&n , ~107!

which is a discrete version of the Green-Kubo relation
@37,38#

D5
1

2LE2`

1`

^v~X!•v~F tX!&mdt. ~108!

Equations~107! and ~108! are strictly equivalent, as can be
shown by a direct calculation using Eq.~14!. Equation~107!
is also another version of a formula obtained by Cvitanovic´,
Eckmann, and Gaspard@28#, which expresses the diffusion
coefficient in terms of the unstable periodic orbits and their
characteristic quantities appearing in thez function ~59!. In
this formula of Ref.@28#, the diffusion coefficient is given as

the ratio of the autocorrelation function of the jump function
to the average time of flight, both calculated from the stabil-
ity eigenvalues of the mapping, i.e., from the invariant mea-
sure of the mapping.

E. Microscopic current and Fick’s law

In order to show that our construction satisfies Fick’s law,
we need to calculate the mean current of particles passing by
an arbitrary cell when the system is in the nonequilibrium
steady state given by Eq.~100!.

The outgoing and ingoing currents at the celll are given
by, respectively,

j ~out!5 1
2 ^v~j,t!Cg~j,t,l!&m ~109!

and

j ~ in!5 1
2 ^v~uj,t!Cg~j,t,l!&m , ~110!

where we took the time-reversed velocity. The factor1
2 is

required because each cell of the suspension flow contains
particles in transit between two lattice sites.

We first remark that the term linearly increasing withl in
~100! is constant in each cell of the lattice so that this term
vanishes in the mean currents. ThereforeCg can be replaced
by cg in Eqs. ~109! and ~110!. Using the definition~21! of
the invariant measure together with Eqs.~14! and ~94!, as
well as the time-reversal properties~22! and ~23!, we get

j ~out!52
1

2^T&n
(
j51

`

^a~j!g•a~w2 jj!&n

1
1

2^T&n
^n~j!g•a~w21j!&n , ~111!
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j ~ in!51
1

2^T&n
(
j50

`

^a~j!g•a~w jj!&n

1
1

2^T&n
^n~j!g•a~w21j!&n . ~112!

Finally, the total current is

j ~ tot! 5 j ~out! 2 j ~ in!52
1

2^T&n
(
j52`

1`

^a~j!g•a~w jj!&n

52Dg, ~113!

where we used the assumption that diffusion is isotropic ac-
cording to Eq.~107!. Equation~113! shows that the current
corresponding to the nonequilibrium steady stateCg obeys
Fick’s law. A similar result has been obtained for the multi-
baker by Tasaki and Gaspard@30,31#.

VI. HIGHER-ORDER DIFFUSION COEFFICIENTS

In this section we investigate the higher-order derivatives
of the eigenvalue and of the eigenstates with respect to the
wave number. We show that these derivatives are related to
higher-order diffusion coefficients such as the Burnett coef-
ficients which appear at the fourth order@39#. If the disper-

sion relation of diffusion is expanded in Taylor series around
k50 we obtain

sk52Dabkakb1Babgdkakbkgkd1O~k6!. ~114!

Dab is the matrix of the diffusion coefficients andBabgd is
the tensor containing the Burnett coefficients, which are thus
given by the fourth derivatives of the eigenvalue with respect
to the wave number atk50.

To simplify the calculations, we make use of a formal
solution of the eigenvalue problem. Thereafter, we observe
that takingN derivatives with respect to the wave number
leads to sums involving at mostN-time correlation functions
of the characteristic functionsT(j) anda(j) of the system
with respect to the mappingw.

Here, the assumption that the mapping has theK property
becomes essential. Indeed, theK property is known to imply
the K mixing @40# and, as a consequence, the property of
multiple mixing that the multiple correlation functions decay
as

^ f 0~j! f 1~w j 1j! f 2~w j 2j! . . . f N21~w j N21j!&n

→^ f 0&n^ f 1&n^ f 2&n . . . ^ f N21&n ~115!

for u j m2 j nu→` for all m,n51, . . . ,N21 and for piecewise
Hölder continuous functionsf m . The bound~15! on the de-
cay of the two-time correlation functions implies that

u^ f 0~j! f 1~w j 1j! . . . f N21~w j N21j!&nu<C~ f 0, f 1 , . . . ,f N21!Min1<m,n<N21$exp~2u j m2 j nug!%, ~116!

if ^ f m&n50 and whereC is a positive constant. Therefore the
sums of suchN-time correlation functions over the integers
j m are guaranteed to converge. Under such circumstances,
higher-order diffusion coefficients such as the Burnett coef-
ficients exist in the system.

A. Formal solution to the eigenvalue problem

A formal solution of the eigenvalue equation~65! can be
obtained by applying successively the Frobenius-Perron op-
erator to the unit function to get

ck~j!5 lim
n→`

)
j51

n

exp@2skT~w2 jj!2 ik•a~w2 jj!#

5 lim
n→`

expJk
~n! . ~117!

By Eqs.~69! and ~72!, we obtain the adjoint eigenvector as

c˜k~j!5 lim
n→`

)
j50

n21

exp@2sk*T~w jj!1 ik•a~w jj!#

5 lim
n→`

expJ̃k
~n! . ~118!

The normalization condition~67! becomes an eigenvalue
equation to determinesk

15^c̃k*ck&n

5 lim
n→`

K )
j52n

1n21

exp@2skT~w jj!2 ik•a~w jj!#L
n

5 lim
n→`

^expGk
~n!&n . ~119!

The derivatives of the eigenvaluesk can therefore be ob-
tained by differentiating successively~119! with respect to
the wave number and settingk50.

The three first derivatives yield the known results that

]ka
s05 lim

n→`

1

2n^T&n
(
j52n

1n21

^aa~w jj!&n50, ~120!

]ka
]kb

s05 lim
n→`

2
1

2n^T&n
(
i52n

1n21

(
j52n

1n21

^aa~w jj!ab~w jj!&n

522Dab , ~121!

]ka
]kb

]kg
s050. ~122!
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Equation~121! implies Eq.~106! because of the identity

(
i52n

1n21

(
j52n

1n21

C~ j2 i !5 (
j522n11

2n21

~2n2u j u!C~ j !, ~123!

and of the property of fast decay of correlations.

B. Burnett coefficients

An expression for the Burnett coefficient can be obtained
by differentiating Eq.~119! four times with respect to the
wave number. The calculation is long but straightforward. It
is necessary to introduce the quantityDT(j)5T(j)2^T&n in
order for the averagêDT&n to vanish so that the property
~116! can be applied. In the calculation, the following corre-
lation functions appear:

C5
1

^T&n
(

i52`

1`

^DT~j!DT~w ij!&n , ~124!

Eab5
1

^T&n
(

i , j52`

1`

^DT~j!aa~w ij!ab~w jj!&n , ~125!

Fabgd5
1

^T&n
(

i , j ,k52`

1`

@^aa~j!ab~w ij!ag~w jj!ad~wkj!&n2^aa~j!ab~w ij!&n^ag~w jj!ad~wkj!&n

2^aa~j!ag~w jj!&n^ab~w ij!ad~wkj!&n2^aa~j!ad~wkj!&n^ab~w ij!ag~w jj!&n#. ~126!

The fourth derivatives of the eigenvalues are now given by

]ka
]kb

]kg
]kd

s05Fabgd14C~DabDgd1DagDbd1DadDbg!

22~DabEgd1DagEbd1DadEbg1DbgEad1DbdEag1DgdEab! ~127!

and the Burnett coefficients by

Babgd5
1

4!
]ka

] kb
]kg

]kd
s0 . ~128!

In the case of isochronism (DT50), only the first term re-
mains in Eq.~127! and we obtain a discrete version of a
known formula for the Burnett coefficient@39#. However, in
the absence of isochronism, correlations between the jump
function and the return time function must also be taken into
account, which explains the presence of the extra terms with
C andEab in Eq. ~127!.

C. Eigenvalues and the Van Hove function

We already mentioned that Eq.~119! can be used to cal-
culate the eigenvalue. If the return time functionT(j) pre-
sents bounded deviations around a positive and finite value,
we may replace the sum over the times of flight by a given
time t, and the sum over the jump vectors by the position
vector traveled by the particle in the lattice over the timet.
In this way, the eigenvalue is given by the alternative expres-
sion @15#

sk5 lim
t→`

1

t
ln^expik•@r ~F tX!2r ~X!#&m5 lim

t→`

1

t
lnF~k,t !,

~129!

in terms of the Van Hove incoherent intermediate scattering
function

F~k,t !5^expik•@r ~F tX!2r ~X!#&m , ~130!

which has been introduced in the study of diffusion by neu-
tron or light scattering techniques@4#. In the form~129!, we
can recognize that the leading eigenvalue of the Frobenius-
Perron operator is nothing else than the dispersion relation of
diffusion. The diffusion coefficient can also be obtained from
~129!, leading to the well-known Einstein formula. Similarly,
taking four derivatives of~129! with respect tok would give
the Burnett coefficients in terms of a known continuous-time
version of~126! @39#.

D. The second derivative of the eigenstate
with respect to the wave number

We may wonder if higher derivatives of the eigenstates
with respect to the wave number also exist. Taking the first
derivative of the formal solution~117!, we obtain immedi-
ately the result~92! at the basis of the expression of the
nonequilibrium steady states. In a similar way, the second
derivative is given by

]ka
]kb

ck~j!5 lim
n→`

expJk
~n!~]ka

]kb
Jk

~n!1]ka
Jk

~n!]kb
Jk

~n!!.

~131!

At k50, we get
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]ka
]kb

c0~j!52Dab(
j51

`

T~w2 jj!

2(
i51

`

aa~w2 ij!(
j51

`

ab~w2 jj!. ~132!

Here again, this expression is meaningless as a function but
may acquire a mathematical meaning as a distribution on test
functions which are piecewise Ho¨lder continuous and such
that ^ f &n50. The property of decay of multiple correlations
~116! guarantees the expression^ f (j)]ka

]kb
c0(j)&n to con-

verge. Therefore higher derivatives of the eigenstates with
respect to the wave number may also be expected to exist as
distributions.

VII. THE LORENTZ GAS AS A SUSPENSION FLOW

A. Definition of the dynamics

To illustrate the preceding theory, we consider the Lorentz
gas where a point particle undergoes elastic collisions on
hard disks which are fixed in the form of a triangular lattice
in the plane. The disks are assumed to have a radius equal to
unity and we denote byd the distance between the centers of
the disks. For this system, Bunimovich and Sinai proved the
existence of a finite diffusion coefficient in the finite horizon
regime when 2,d,4/A3 ~see Fig. 2! @9#. In contrast, for
d.4/A3, the horizon affecting the particle as well as the
diffusion coefficient becomes infinite and diffusion is anoma-
lous. Ford,2, the point particle remains trapped in one of
the closed billiards formed at the interstices between the par-
tially overlapping disks. Here below, we consider the finite
horizon regime where diffusion is normal@24#.

The point particle moves in the plane and collides with
fixed hard disks. The position vector isr5(x,y). Elastic
collisions occur on the disks which are impenetrable so that
the allowed positions satisfy

Q :ur2 lmnu.1, ~133!

where

lmn5ml101nl01PL ~134!

are the positions of the centers of the disks. These vectors
belong to the triangular Bravais latticeL defined in terms of
the two basic vectors

l105~d,0! and l015S d2 ,A32 dD , ~135!

wherem andn are two integers. Accordingly, the reciprocal
lattice L̃ introduced with the spatial Fourier transforms in
Sec. III is also triangular with a hexagonal Brillouin zone of
area~31! given by

uBu5
~2p!2

u l103 l01u
5

8p2

A3d2
. ~136!

Between the collisions, the motion of the Lorentz gas is
ruled by the free-particle Hamiltonian~28!. The dynamics on
the different energy shells only differ by a rescaling of the
time in terms of the magnitude of the velocityuvu. Therefore
we can restrict ourselves without loss of generality to the
energy shell where the velocities have a unit magnitude
uvu51. On this energy shell, the phase space of the flow is
tridimensional composed of the two positionsr5(x,y)PQ

and of the anglea of the velocity with respect to thex axis:
(x,y,a). Accordingly, the velocity is given by
v5uvu(cosa,sina) with aP@0,2p@ .

Let us consider a trajectory@r (t),v(t)#. In the phase
space, the trajectory is piecewise linear between the colli-
sions. At each collision$t j% j52`

1` , the current position satis-
fies ur (t j )2 l j u51, wherel j is the center of the disk where the
collision takes place. The velocities before and after thej th
collision are denoted, respectively, byvj

(2) andvj
(1) . Denot-

ing the points of impact on the disks by$r j% j52`
1` , the vector

normal to the disk and exterior to the disk at thej th collision
is given by

nj5
r j2 l j

ur j2 l j u
5r j2 l j . ~137!

With these definitions, the velocities before and after each
collision are related according to the law of geometric optics

vj
~1 !5vj

~2 !22nj~nj•vj
~2 !!, ~138!

while the trajectory between the collisions is

r ~ t !5r j1~ t2t j !vj
~1 ! for t j<t<t j11 . ~139!

These equations define the flow in the phase space given by
the domainQ of the billiard and by the range@0,2p@ of the
velocity angle.

B. Suspension flow

The collision rule~138! and the trajectory equation~139!
allow us to reduce the flow of the Lorentz gas to its Birkhoff
mapping, as follows.

Each collision is uniquely characterized by the diskl j of
the collision, by the arc of perimeterr j of the impact, and by
the angleh j between the outgoing velocityvj

(1) and the nor-
mal at the point of impactnj :nj•vj

(1)5cosh j>0. The

FIG. 2. Lorentz gas with a finite horizon showing the 12 disks to
which transitions are allowed by the geometry starting from disk
No. 0.
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Birkhoff coordinates (r j ,v j )PP are given by the aforemen-
tioned arc of perimeterr j starting from thex axis and by the
velocity componentv j parallel to the border of the disk,

v j5t j•vj
~1 !5sinh j . ~140!

t j is a unit vector tangent to the disk at the point of impact
such thatt j•nj50 and the basis (nj t j ) has the same orienta-
tion as the axes (x,y).

The motion from a collision to the next is thus given by
the Birkhoff mappingj j115w(j j ) which is area preserving
so that condition~I! and Eq.~18! are satisfied. Moreover,
condition~II ! holds for the mappingw which is time-reversal
symmetric under the involutionu(r ,v)5(r ,2v) satisfying
~22!.

The first return time functionT(j) is here given by the
time of flight between two successive collisions,

T~j j !5ur j112r j u, ~141!

which is equivalent to the length of the corresponding free
path sinceuvu51. On the other hand, the jump function
a(j) is given by a vector of the triangular Bravais lattice
~134! and~135!. With these definitions, we can construct the
mapping~9!, which controls the suspension flow of the Lor-
entz gas. Introducing the time coordinatet between two suc-
cessive collisions, the complete set of coordinates of the sus-
pension flow is here explicitly given by

X5~j,t,l!5~r ,v,t,l!

P@0,2p@ ^ #21,11@ ^ @0,T~j!@ ^L. ~142!

The original flow can be reconstructed from these coordi-
nates thanks to Eq.~13! where the vectorn(j) is the normal
vector ~137!. From the knowledge of the Birkhoff coordi-
nates and of the current disk, the position and velocity of the
particle at the collision can thus be recovered according to

nj5~cosr j ,sinr j !,

t j5~2sinr j ,cosr j !,

r j5~cosr j ,sinr j !1 l j ,

vj
~1 !5@cos~r j1h j !,sin~r j1h j !#

5@A12v j
2cosr j2v jsinr j ,

A12v j
2sinr j1v jcosr j #. ~143!

During the flights between the collisions, the isomorphism
between the coordinates~142! and the original coordinates of
the particle is hence given by

S~r ,v,t,l!5F l1S cosr1t cosa

sinr1t sina D ,S cosasina D G5~r ,v!,

~144!

where

cosa5cos~r1h!5A12v2cosr2vsinr ,

sina5sin~r1h!5A12v2sinr1v cosr . ~145!

C. Properties of the mapping

Here, we summarize some known properties of the
Birkhoff mapping of the Lorentz gas@9–11,24#.

In the case of a finite horizon, the particle on the disk at
the origin can only move to one of the 12 disks of the first
and second shells surrounding the central disk~see Fig. 2!.

FIG. 3. In the coordinatesj5(r ,v)P@0,2p@ ^ #21,11@ , rep-
resentation of the lines of discontinuities of the mappingw separat-
ing the subdomains~146!: ~a! for d52.3; ~b! for d52.15; ~c! for
d52.01. The integers are the labelsl of the disks reached at the
next collision, assuming that the particle is initially on the disk No.
0, as shown in Fig. 2.
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Therefore the domain of definition of the mappingw is di-
vided into 12 subdomains

P5@0,2p@ ^ #21,11@5ø l51, . . . ,12P l . ~146!

Examples of such subdomains are given in Fig. 3. On the
borders]P l of these subdomains, each one of the functions
w(j), T(j), anda(j) defining the mapping~9! is discontinu-
ous. Inside the subdomainsP l , these functions are smooth,
i.e., analytic. In particular, forjPP l , the jump vectora(j)
is constant since it is given by the vector between the centers
of the disks 0 andl .

The dynamical instability of the Lorentz gas can be char-
acterized by the largest Lyapunov exponent. For the trajec-
tory of initial conditionX5(j,t,l), this latter is obtained as

l~X!5 lim
T→1`

1

TE0
T

Bu~f tX!dt, ~147!

where the curvature of the expanding horocircle accompany-
ing the trajectory~as defined in Ref.@35#! is given by@10#

Bu~j,t!5
1

t1
1

2

A12v0
2

1
1

T211
1

2

A12v21
2

1
1

T221
1

2

A12v22
2

1 . . .

, ~148!

where 0<t<T(j), Tj5T(w jj), and v j5v(w jj) with
j50,21,22,23, . . . . The expanding horocircle is deter-
mined by the past trajectory. Because the curvature~148! is
positive for all the trajectories when the horizon is finite, the
Lyapunov exponent of each trajectory is also positive and the
dynamics is hyperbolic. The first part of condition~III ! is
therefore satisfied.

The curvatures immediately before and after the collision
at j are defined by, respectively,

Bu
~2 !~j !5Bu@w21j,T~w21j!#, ~149!

Bu
~1 !~j !5Bu~j,0!. ~150!

According to the ergodic property proved by Bunimovich
and Sinai@9#, the average Lyapunov exponent is thus given
in terms of the ergodic invariant measurem as

l̄ 5^Bu~j,t!&m5
1

^T&n
E dr dv

4p E
0

T~j!

dt
1

t1
1

Bu
~1 !~j !

5
1

^T&n
^ ln@11T~j!Bu

~1 !~j !#&n , ~151!

which is a form of the Abramov formula@19#.
Furthermore, the tangent space of the area-preserving

mappingw can be decomposed locally into its stable and
unstable directions. The unstable direction atj5(r ,v) is
given by @10#

dvu
dr

5A12v2@Bu
~2 !~r ,v !A12v211#, ~152!

where

Bu
~2 !~j !5

1

T21

1

2

A12v21
2

1
1

T221
1

2

A12v22
2

1
1

T231
1

2

A12v23
2

1 . . .

, ~153!
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with the same conventions as in Eq.~148!. On the other
hand, the stable direction is given by

dvs
dr

52A12v2@Bs
~1 !~r ,v !A12v211#, ~154!

in terms of the curvatureBs
(1)(j) of the contracting horo-

circle, which is determined by an expression similar to~153!
but for the whole future trajectory~with T2 j replaced by
Tj21 andv2 j by v j ).

The stable and unstable directions exist at every pointj of
the domain of definition of the mapping. Nevertheless, the
stable and unstable directions have discontinuities inherited
from the discontinuities of the mapping. These discontinui-
ties of the curvatures appear on a dense set of zero Lebesgue
measure because all the images or preimages of the borders
of the subdomains, namely,w j (]P l), form discontinuities.
This phenomenon is shown in Fig. 4. Because of these dis-
continuities, the dynamics is not structurally stable so that
the disk billiard is not an Axiom-A system.

In spite of these differences with respect to Axiom-A sys-
tems, Bunimovich and Sinai@9# and, more recently, Chernov
and co-workers@10,11# proved for the Lorentz gas the series
of ergodic properties which we require in condition~III !.

~a! The Lorentz gas is aK flow so that it isK mixing,
mixing, and ergodic@9#.

~b! The decay of correlations with respect to the mapping
is fast of stretched exponential type so that~15! is satisfied
for piecewise Ho¨lder continuous functions@11#.

~c! The central limit theorem~16! and~17! holds @9–11#.
~d! When the Lorentz gas has a finite horizon, both the

functionsT(j) and a(j) are bounded and the central limit
theorem applies to them so that the diffusion coefficient is
positive and finite and the trajectories follow a standard
Brownian process on large scales@9#.

Since conditions~I!–~III ! hold for the regular Lorentz gas
with a finite horizon, we can apply the spectral theory of the
Frobenius-Perron operator to construct the nonequilibrium
steady states, the hydrodynamic modes, and the dispersion
relation of diffusion as a Pollicott-Ruelle resonance.

D. Nonequilibrium steady states

In Sec. V we constructed the nonequilibrium steady states
corresponding to a gradientg of concentration in the form of
Eq. ~94!. Thanks to the results of Chernov@11#, we obtain
the following theorem.

Theorem. In the triangular Lorentz gas with finite horizon,
the nonequilibrium steady statecg(j) is a distribution or
linear functional defined by Eq. (96) on piecewise Ho¨lder
continuous functions f(j) defined on the domain (146).

This result can be proved using the property~15! of fast
decay of correlations which applies to the jump vectora(j)
since it is bounded and piecewise Ho¨lder continuous. Con-
sidering a test functionf (j) which is also piecewise Ho¨lder
continuous, the series~96! thus converges absolutely, which
defines the nonequilibrium steady state as a linear functional.
Q.E.D.

Since the forward dynamics tends to smooth out the prob-
ability densities along the unstable directions the correspond-
ing invariant measurecg(j) given by ~94! is regular along

the unstable directions~152! but singular along the stable
directions~154!. For the flow of the Lorentz gas, the non-
equilibrium steady state may be obtained from Eq.~102!, in
which the first term is a regular function which represents the
average linear profile of concentration across the lattice. On
the other hand, it is the second term which is singular and
which represents the fluctuations around the nonequilibrium
steady state.

In order to give a representation to a distribution like~94!
we consider its cumulative function defined by applying the
distribution on the characteristic function

x~r ,v !~j !5H 1 for jP†0,r @ ^ #21,v†

0 otherwise,
~155!

which is also piecewise Ho¨lder continuous. The cumulative
function of the nonequilibrium steady state is therefore de-
fined as

T g~r ,v !5^x~r ,v)cg&n5
1

4pE0
r

dr8E
21

v
dv8cg~r 8,v8!,

~156!

which has two components whether the gradient is in thex or
in the y direction,

T x~r ,v !52(
j51

`

^x~r ,v !~j !ax~w2 jj!&n ,

T y~r ,v !52(
j51

`

^x~r ,v !~j !ay~w2 jj!&n , ~157!

so thatT g5gxT x1gyT y . These functions, which are con-
tinuous but nondifferentiable, are the analog for the Lorentz
gas of the nonequilibrium steady state constructed by Tasaki
and Gaspard for the dyadic multibaker@30,31#.

The functions~157! are depicted in Figs. 5 and 6 for two
different values of the interdisk distance. In the Lorentz gas,
the particle performs several collisions in each cell before
going to neighboring cells and diffusing. On the contrary, in
the multibaker, the particle immediately goes to a neighbor-
ing cell after one iteration. For this reason, the fractal nature
of the curves defined by the cumulative functions is less
apparent in the Lorentz gas than in the multibaker.

E. Diffusion and its dispersion relation

In Sec. V we showed that the leading Pollicott-Ruelle
resonance of the Frobenius-Perron operator~55! gives us the
dispersion relation of diffusion. In particular, the diffusion
coefficient is obtained from the second derivative of the ei-
genvaluesk with respect to the wave number atk50. Since
the triangular lattice is isotropic, the diffusion coefficient is
given by Eq.~107! with L52.

The eigenvalue itself can be obtained using the Van Hove
function ~130! and Eq.~129!, which we used for a numerical
evaluation of the dispersion relation depicted in Fig. 7. We
observe that the eigenvalue satisfies

sk.2Dk2, ~158!
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at small values of the wave numberk. The value of the
diffusion coefficient obtained by this method is in agreement
with the values previously obtained by other methods
@12,24#. No deviation with respect to~158! has been ob-
served at small wave numbers beyond numerical errors so
that the Burnett coefficients should be very small. At larger
values ofk, the eigenvaluesk seems to encounter other sin-
gularities down along the negative real axis which suggests
that the dispersion relation becomes either complex or ill
defined due to complex singularities, for instance, branch
cuts.

F. Cumulative functions of the eigenstates

We have also investigated numerically the properties of
the eigenstates, solutions of Eq.~65!, by using the formal

solution given by~117!. As for the nonequilibrium steady
states, the distributions defining the eigenstates can also be
represented by their cumulative functions as

G k~r ,v !5^x~r ,v !ck&n , ~159!

in terms of the characteristic function~155!. The real and
imaginary parts of these complex functions are depicted in
Fig. 8. Expanding the eigenstate in Taylor series around
k50, the cumulative function becomes

G k~r ,v !5^x~r ,v !&n1k•^x~r ,v !]kc0&n

1
1

2
kk :^x~r ,v !]k

2c0&n1O~k3!

5
r ~v11!

4p
1 iT g5k~r ,v !1O~k2!. ~160!

We observe that the first term corresponds to the uniform
probability density representing the microcanonical en-
semblen for which the cumulative function is real and linear
in the coordinatesrP@0,2p@ andvP]21,11@ . The second
term is precisely the cumulative function~156! and~157! of
the nonequilibrium steady state here evaluated forg5k. We
notice that the real part is determined by all the even deriva-
tives while the imaginary part is determined by all the odd
derivatives. Therefore we have

FIG. 4. In the Lorentz gas withd52.3: ~a! CurvatureBu
(2) of

the unstable horocircle immediately before the collision given by
Eq. ~153! along the linej5(r ,v50) ~dots; a solid line joining the
dots is used to display the discontinuities!. ~b! Density plot of
Bu
(2) in the domain where 0,r,p/3 and 0,v,1. The instability

is higher in the light regions than in the dark ones. The preimages of
the discontinuity lines appear in this plot. The first preimages are
the discontinuities of the inverse mappingw21 which are the lines
of Fig. 3 transformed by the time-reversal symmetry under
(r ,v)→(r ,2v).

FIG. 5. In the Lorentz gas withd52.3, representation of the
nonequilibrium steady states given by their cumulative functions
~157!: ~a! T x(r ,v) for a gradient along thex axis; ~b! T y(r ,v) for
a gradient along they axis. The cumulative functions are plotted in
the interval 0,r,2p for fixed values ofv520.75,20.5,20.25, 0,
0.25, 0.5, 0.75, and 1.
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ReG k~r ,v !5
r ~v11!

4p
1O~k2!,

ImG k~r ,v !5T g5k~r ,v !1O~k3!, ~161!

in accordance with the real and imaginary parts of the eigen-
states of Fig. 8, as compared with the nonequilibrium steady
state of Fig. 5. This comparison illustrates that the nonequi-
librium steady state provides the leading contribution to the

imaginary part of the eigenstate which is a numerical evi-
dence of the consistency of the theory.

VIII. CONCLUSIONS

In this paper we constructed the hydrodynamic modes of
diffusion in a large class of spatially extended flows, which
includes Hamiltonian flows. The hydrodynamic modes are
shown to be the eigenstates of the Frobenius-Perron operator
associated with the Pollicott-Ruelle resonances. Moreover,
we also deduced the nonequilibrium steady states corre-
sponding to uniform gradients of concentration. Under the
validity of several conditions, we showed that the nonequi-
librium steady states have a mathematical meaning as distri-
butions thanks to the property of decay of correlations. We
prove this result for the Lorentz gas with a finite horizon in
which the required conditions are known to hold.

The construction is based on the Pollicott-Ruelle eigen-
value problem for a special Frobenius-Perron operator of the
mapping associated with the suspension flow. This
Frobenius-Perron operator is obtained by two successive re-
ductions. The first one uses a spatial Fourier transform to go
from the lattice to one of its elementary cells while the sec-
ond one uses the property that the flow is essentially con-
trolled by a Poincare´ mapping:

FIG. 6. Same as Fig. 5 in the Lorentz gas withd52.01.

FIG. 7. In the Lorentz gas withd52.3, dispersion relation of
diffusionsk5s(kx ,ky) given by Eq.~129! in terms of the Van Hove
function. The eigenvalue is evaluated alongk5(k,0) ~squares, solid
line!; k5(0,k) ~crosses, dashed line!; k5(k,k) ~circles, solid line!.
The three curves are consistent withsk.2D(kx

21ky
2) with the dif-

fusion coefficientD.0.25. We remark that the eigenvaluesk pre-
sents a small imaginary part~not visible in the figure! due to nu-
merical errors.

FIG. 8. In the Lorentz gas withd52.3, eigenstateck corre-
sponding to a hydrodynamic mode of wave numberk5(0.1, 0) and
represented by its cumulative functionG k(r ,v) given by Eqs.
~159!–~161!: ~a! real and~b! imaginary parts depicted in the inter-
val 0,r,2p for fixed values ofv520.75,20.5,20.25, 0, 0.25,
0.5, 0.75, and 1.
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~j,t,l!→~j,tuk!→~jus,k!, ~162!

P̂t→Q̂k
t→R̂k,s ,

which shows the chain of reductions. The last Frobenius-
Perron operator is special because, on the one hand, it re-
duces the dynamics of the flow to a dynamics induced by the
mapping, while, on the other hand, it depends on the wave
number associated with the modes in the infinitely extended
system.

The present work shows that this special Frobenius-
Perron operator may admit eigenstates corresponding to ex-
ponential relaxation toward thermodynamic equilibrium. An
explanation is here in order. Many recent works have been
concerned by relaxation in the sector of vanishing wave
numberk50 which is important for the decay of correla-
tions. In this sector, the leading Pollicott-Ruelle resonance
vanishes,s050, and corresponds to the invariant Lebesgue
measuren of the microcanonical ensemble. In this sector, the
decay of correlations is controlled by the complex singulari-
ties of thez function ~59! deeper in the complexs plane
below the leading Pollicott-Ruelle resonances050. These
singularities which are not known for the moment lead in
general to nonexponential decays of correlation functions in
the sectork50.

In contrast, we are here concerned by theleading
Pollicott-Ruelle resonance, but in the sectors with nonvan-
ishing wave numberskÞ0. This problem has not yet been
systematically studied. It turns out that there exists a leading
Pollicott-Ruelle resonancesk which is the continuation of the
resonances050 as the wave number becomes nonvanishing.
This resonance characterizes an exponential relaxation to the
thermodynamic equilibrium because it is negative. Sincesk
is arbitrarily small ask→0, the relaxation rate becomes ar-
bitrarily long as expected for hydrodynamic modes of diffu-
sion when their wavelength increases. It is therefore not sur-
prising to find well-defined exponential behaviors at the level
of the special Frobenius-Perron operator which incorporates
the wave numberk.

WhenkÞ0, the corresponding eigenstates are no longer
absolutely continuous with respect to the Lebesgue measure
but become singular measures or distributions defined on
some smooth enough test functions. The distributions are
sufficiently regular to admit cumulative functions which we
plotted for the Lorentz gas.

The construction of the eigenstates we propose is system-
atic and is not approximate so that it constitutes a construc-
tion of the hydrodynamic modes—which describe an expo-
nential relaxation to thermodynamic equilibrium—at the
fundamental level of the Liouvillian dynamics. Moreover,
our derivation of the Green-Kubo relation from the Ruelle-
Pollicott resonance of the Frobenius-Perron operator pro-
vides a fundamental justification of this famous relation in
terms of the dynamics of relaxation to the thermodynamic
equilibrium. The Burnett coefficients are also justified in the
same way.

In the present theory, the time evolution splits into two
distinct semigroups corresponding to forward and backward
evolutions of nonequilibrium statistical ensembles repre-
sented by smooth enough probability densitiesr. The
Pollicott-Ruelle resonances with Resk<0 are part of the

forward semigroup defined fort.0. An antiresonance
with Res̃k>0 corresponds to each Pollicott-Ruelle resonance
by time-reversal symmetry, which defines the backward
semigroup of application for the negative timest,0. The
eigenstates of the forward semigroup are smooth in the un-
stable directions but singular in the stable direction, but the
situation is reversed for the backward semigroup. In this re-
gard, the present theory provides an explanation of the phe-
nomenon of irreversibility at the level of the time evolution
of nonequilibrium statistical ensembles composed of infi-
nitely many trajectories and represented by smooth probabil-
ity densitiesr. Irreversibility has here its origin in the dy-
namical instability of the trajectories. This irreversibility at
the statistical level of ensemble dynamics turns out to be
compatible with the microscopic reversibility at the level of
individual trajectories.

On the other hand, the present construction of the non-
equilibrium steady states shows that the steady states are
directly connected with the Green-Kubo relation and with
the validity of Fick’s law. Here, we see that the nonequilib-
rium steady states appear at the level of the first derivatives
with respect to the wave number and the Green-Kubo rela-
tion at the level of the second derivatives.

The present work extends a previous construction by
Tasaki and Gaspard@30,31# of the nonequilibrium steady
states for the multibaker which are hence recovered. Indeed,
the multibaker mapping is given by the area-preserving
baker map in the coordinatesj5(x,y) so that the return time
function may be taken asT(j)51. In the multibaker, trans-
port occurs along a sequence of squares as described by the
functiona(j)571 whether the jump is to the left or to the
right depending on whether 0,x,1/2 or 1/2,x,1. In this
case, the nonequilibrium steady state~100! is given by

Cg~j,l !5gl2(
j51

`

ga~w2 jj!. ~163!

Its cumulative function,

T g~j,l !5E
0

x

dx8E
0

y

dy8Cg~x8,y8,l !5glxy1gxT~y!,

~164!

involves the so-called Takagi functionT(y), which is con-
tinuous but nondifferentiable and has fractal properties. In
the case of the Lorentz gas, Eq.~157! defines therefore the
analog of the Takagi function in an infinitely extended bil-
liard.

As we discussed elsewhere@23,25#, nonequilibrium in-
variant measures with fractal supports can be used to define
nonequilibrium states in the chaotic-scattering approach. In
this approach, the fractal support tends to fill the whole phase
space and becomes a plain support in the infinite-system
limit. In this way, the nonequilibrium measures and escape-
time functions of the chaotic-scattering approach turn out to
be related to the present nonequilibrium steady state as
shown explicitly for the multibaker@31#.

The simplicity of the expressions~102! and ~103! of the
nonequilibrium steady states suggests the generalization of
the present results to the other transport and rate coefficients
in N-particle systems. Let us suppose that the gradient cor-
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responding to the transport coefficienta is given by the unit
vector g. The microscopic current corresponding to such a
process is denoted byJg

(a) . A Helfand momentGg
(a) is asso-

ciated with the microscopic current such that
Jg
(a)5(d/dt)Gg

(a) 5{Gg
(a),H%, where$ , % denotes the Pois-

son bracket@41#. In the case of diffusionGg
(D)5g•r and

Jg
(D)5g•v wherer andv are the particle position and veloc-
ity @23#. The nonequilibrium steady state and its time-
reversed state are thus given in general systems by

Cg
~a!~X!5Gg

~a!~X!1E
0

2`

Jg
~a!~F tX!dt, ~165!

C̃g
~a!~X!5Gg

~a!~X!1E
0

1`

Jg
~a!~F tX!dt ~166!

for a trajectory of initial condition at the phase-space point
X5$Ra ,Pa%a51

N . We should notice that the distributions
~165! and ~166! are invariants of motion in the sense that
Cg

(a)(X)5Cg
(a)(F tX), as can be verified using the defini-

tions ofGg
(a) andJg

(a) . This invariance is rendered compat-
ible with the presence of chaotic behaviors thanks to the
singular character of the states. Indeed, a theorem by Moser
asserts that there are no analytic invariant functions in the
presence of transverse homoclinic orbits as is the case here
@42#. The presence of chaotic behaviors thus opens the way
to new types of invariant of motion given by distributions.

The average current in the directione is given as one-half
the outgoing flux minus one-half the ingoing flux, which can
be calculated with the time-reversed steady state in analogy
with the case of diffusion treated here above,

j e
~a!5 1

2 ^Je
~a!~X!Cg

~a!~X!&m2 1
2 ^Je

~a!~X!C̃g
~a!~X!&m

52
1

2 E
2`

1`

^Je
~a!~X!Jg

~a!~F tX!&mdt52ae•g,

~167!

where^&m denotes the average over the equilibrium state and
where we used a change of variablet→2t. This result is
obtained for an isotropic system under the condition of va-
lidity of the Green-Kubo relations. The result~167! shows
that the average current is constant and given by the unit
gradient multiplied by the transport coefficient in agreement
with Fick’s and Fourier’s laws, or the laws ruling viscosity.
In this way, the methods of the present work can be used to
construct nonequilibrium steady states associated with vis-
cosity, in particular, in the two-disk fluid studied in Ref.
@43#.

After the completion of the present work, we learned that
in the 1970s Zubarev introduced local integrals of motion of
the form @44#

P~a!~x,t !5r~a!~x,t !1E
2`

0

“• j ~a!~x,t1t!dt, ~168!

wherer (a) and j (a) are the local density and current associ-
ated with the propertya and which obey the local conserva-
tion equation] tr

(a)1“• j (a)50. In the case of diffusion,
r (D)5d@x2r (t)# and j (D)5v(t)d@x2r (t)# so that
Zubarev’s local integral of motion turns out to be related to
our invariant of motion~165! according to

Cg
~D !~r ,v!5E ~g•x!P~D !~x,0!d3x, ~169!

as shown by a straightforward calculation using properties of
the derivative of Dirac distribution, as well asr (0)5r and
v(0)5v. The present theory in which these invariants of
motion are derived from the Liouville dynamics clarifies the
interpretation of these quantities.

In conclusion, this work brings a microscopic foundation
of the hydrodynamic modes and of the nonequilibrium
steady states in a large class of continuous-time systems,
including Hamiltonian flows. These modes which play a cen-
tral role in kinetic theory turn out to be defined at the level of
phase space in terms of mathematical distributions or,
equivalently, of singular measures. As a consequence, the
hydrodynamic modes and the nonequilibrium steady states
cannot be represented in general by density functions but by
cumulative functions in the case of a Liouville dynamics.
The problem of the construction of the hydrodynamic modes
has been a major preoccupation in kinetic theory since the
works of Boltzmann and Hilbert@3,29#. This construction
has been restricted to the level of the kinetic equations ob-
tained after the introduction of some stochastic approxima-
tion which turns singular measures into regular ones. This
approximate procedure seemed until very recently to be an
inherent limitation in nonequilibrium statistical mechanics.
However, we can see in the present work that such approxi-
mations can be avoided thanks to the recent developments in
dynamical systems theory.
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